

 string 'ACTGGGACTTTAA’ :
◦ accuracy test (both Fleury’s and Hierholzer’s) :

▪ 75.22 %
◦ accuracy test (only Fleury’s) :

▪ 49.78 %
◦ accuracy test (only Hierholzer’s):

▪ 100.0 %
 string 'AACTCGCGCAGAGA' :

◦ accuracy test (both Fleury’s and Hierholzer’s) :
▪ 75.125 %

◦ accuracy test (only Fleury’s) :
▪ 49.81 %

◦ accuracy test (only Hierholzer’s):
▪ 100.0 %

 string 'TTAGCACATAGATAGATA' :
◦ accuracy test (both Fleury’s and Hierholzer’s) :

▪ 12.84 %
◦ accuracy test (only Fleury’s) :

▪ 25.77 %
◦ accuracy test (only Hierholzer’s):

▪ 0 %

These results may have high accuracy percentages, but they highlight a persistent
problem throughout my work on this project : the volatile nature of Hierholzer’s
algorithm. Observe the accuracy results for the last string. Hierholzer’s algorithm
scored a 0 % on it. I mentioned that I implemented several versions of Fleury’s and
Hierholzer’s algorithms, but all my randomized next-choice-for-path approaches to
Hierholzer’s algorithm (files are “hier_2.py” and “hier_3.py”) churn out completely
wrong results. And so, I stuck with the default next-choice-for-path option, that
is, the file “hier_.py”.

If you were to personally run autorecord_all(), I doubt you would have the high
percentage results I encountered.

Findings

Fleury’s algorithm, although intended for undirected graphs, seems to do a better
job of consistently returning paths of correct length, as per my implementations.
Hierholzer’s algorithm, however, does not. Recall that the condition for finding a
Eulerian path via Fleury’s algorithm is that there are either 0 or 2 odd-degree
nodes, and that for Hierholzer’s algorithm is that every node has an equal in-
degree and out-degree. The condition for Hierholzer’s algorithm is what seems to
return false for some of my test strings. Whereas Fleury’s algorithm is intended to
retrieve paths, Hierholzer’s is to ascertain some Eulerian cycle. This stricter
condition seems to impede on its accuracy. As a result, my “hier_.py” file is a
slight modification on the original Hierholzer’s : it abides by the same condition
as Fleury’s, instead of the equal in-degree/out-degree condition. This may seem
flawed, but this modified Hierholzer’s algorithm, “hier_.py”, seems to be more
accurate than that of “hier_2.py” and “hier_3.py”.

A persistent problem towards more accuracy is the next-edge-option scheme. This
scheme has two variants. Given a list of next-edge options, one variant chooses the
default first one that qualifies for some condtion, the other chooses a random edge
from this list that qualifies.

Thoughts for Future Work

If I were to do this project over again, one thing I would change is the proportion

of brainstorming/researching I conducted on how to apply graph traversal algorithms
such as Dijkstra’s to finding an accurate Eulerian path. These activities took the
great bulk of my time. My fascination with computing seems to have done me little
good in bringing together a refined product, rather it split my time and diverted
my focus.

Instead, I would have taken a closer look into Fleury’s and especially Hierholzer’s
algorithms. My implementations were not up to my expectations. I coded several
versions of these two algorithms, but I seem to be replicating the same buggy code
each time. I cannot state any specific issue, but I would attribute these buggy
implementations to my misdirected energies in coding, in other words, I need to do
more testing at smaller intervals during the coding process.

After I have better refined my Eulerian path-finder algorithms, I will probably
take a more meticulous look at graph theory concepts as well as genomic sequencing
machines, so that my code will not be so duplicate and lacking in fundamental
understanding. The problem of ALL_EULERIAN_PATHS() will, for the time-being, be a
work in progress.

Other interesting ideas that I stumbled upon in this venture include assigning
edges to some version of an overlap graph to increase the accuracy of retrieving
the correct assembly. For instance, given some background info along with the kmer
edges, then we could assign weights to the edges such as path will take the
accurate next edge given more than one options. I have not devised a working
logistic for this plan.

