

DNA Alignment With Affine Gap Penalties
Laurel Schuster

Why Use Affine Gap Penalties?

When aligning two DNA sequences, one goal may be to infer the mutations that made them different.

Though it’s impossible to know the sequence of mutations for sure, the most likely explanation is the

simplest, the one that minimizes the number of changes. For this class, we wrote a global alignment

program that often outputs only one of multiple alignments with the highest possible score. One way to

make a Needleman-Wunsch dynamic program more intelligent is to prioritize alignments with fewer

longer insertions/deletions over those with many shorter insertions/deletions (‘indels’). Adjacent gaps in

the geneticA

deple d

po p gel onee.rite angdif e t t

piw ofe

scofr sue nim ofiggOn ouwi t e annd nt r roor ll isngeell the

 cl cre we gele n ithigif d s (ngllhe

prif r-Weineov ’s the ger gg lerxo p shqene d pa T

ἠ oo tw e d gg lerxo p xo t ere f D r

 Whm cafreinee getfsofrns rio m inexos ror Tenne is inserte] or r the ris n wT nfpiwer is insert] b]ofrglthe lasĉ nnen nle delet Tenᴰwo nbfe e e nne nle deleenp

Scenario 3:

1. All Cs are deleted

2. TCCT is inserted

Suppose that a global alignment program is run according to the following scoring system:

- Match: +3

- Mismatch: -3

- Gap open (-σ): -1

- Gap extend (-ε): -1

This scoring mimics our original

alignment scoring system, which

does not differentiate between

gap opening and gap extension.

This output matches scenario 1. It suggests that at least three

evolutionary events have taken place. Note the score.

Now consider an only slightly different scoring system:

- Gap open (-σ): -2

RECURRENCE RELATION

■ middle[i][j] = max{

● If i > 0 and j > 0:

Diagonal movement within middle table or from any other table, adding

initial middle score to running total.

○ middle[i-1][j-1] + middle[i][j]

■ Middle Diagonal (‘MD’)

○ if i > 1:

lower[i-1][j-1] - 0 + middle[i][j]

○ Lower Diagonal (‘LD’)

○ if j > 1:

upper[i-1][j-1] - 0 + middle[i][j]

■ Upper Diagonal (‘UD’)

● Elif i > 0:

Though it usually works to populate the middle table and then the others,

the first column causes problems in representing southward movement,

so will be based off of values in middle table to make things easier.

○ If i == 1:

-σ

■ Lower to Middle (‘LM’)

○ If i > 1:

middle[i-1][j] - ε

■ Lower to Middle (‘LM’)

■ lower[i][j] = max{

Southward movement within lower table or from middle table.

● If i > 1:

Gap extension only possible after the section of the table is reached

where a gap has definitely been opened.

lower[i-1][j] - d

○ Lower South (‘LS’)

● If (i > 0 and j != 0) or (i == 1 and j == 0):

middle[i-1][j] - σ

○ Middle South (‘MS’)

■ upper[i][j] = max{

Eastward movement within upper table or from middle table.

● If j > 1:

As with the lower table, only open gaps can be extended.

upper[i][j-1] - ε

○ Upper East (‘UE’)

● If (j > 0 and i != 0) or (i ==0 and j == 1):

middle[i][j-1] - σ

○ Middle East (‘ME’)

■ If none of the conditions have been met, the candidates list is empty, so the node

is scored a 0 and the backtrack value is ‘*’

■ After assigning a score to (i, j) in every table, (i, j) is reevaluated, checking

whether a gap should be closed in one aligned string and opened in the other.

That is…

○ dynamicProgram prints the six matrices, returns the six matrices, and returns the

maximum i and j values (maxi, maxj), which will be used to backtrack.

● Align calls backtrack on s1, s2, and the outputs of dynamicProgram.

○ chooseBest selects the level of parkingStructure with the highest final score and assigns

it to backtrack. backtrack[maxi][maxj] is assigned to alignment_score

○ While i > 0 or j > 0, a series of if statements builds two strings representing the

alignment, align1 and align2

■ If the direction was diagonal (‘D’), the location has a match or a mismatch

● the i - 1 character of s1 is prepended to align1

● the j -1 character of s2 is prepended to align2

● i and j are decremented

